
ORIGINAL ARTICLE

An investigation on single machine total weighted
tardiness scheduling problems

Received: 3 April 2002 / Accepted: 26 June 2002 / Published online: 11 June 2003
� Springer-Verlag London Limited 2003

Abstract The urge to produce products in the produc-
tion line at a faster rate with no compromise in quality
has led to scheduling gaining greater importance in the
modern day industries. Scheduling is concerned with
the allocation of limited resources to tasks over time.
The investigations on various scheduling problems have
been of constant interest to researchers worldwide. This
paper deals with an investigation on the total weighted
tardiness of the single machine scheduling problems.
The problems are solved by a heuristic procedure,
namely backward forward heuristics. The different
methods of formulating the problem instances are dis-
cussed. The benchmark problems and their best known
values available in the OR library are used for the
comparison to find out the influence of Relative Due
Date (RDD) and Tardiness Factor (TF) used to gen-
erate the problem instances.

Notations used

n Number of jobs
pi Processing Time of ith job
di Due date of ith job
wi Weight of ith job
pm Mean Processing Time
dm Mean Due date
r Complete sequence of jobs
p[i] Processing Time of the job in the ith position in

the sequence

d[i] Due date of the job in the ith position in the
sequence

w[i] Weight of the job in the ith position in the
sequence

T[i] Tardiness of the job in the ith position in the
sequence

Z(r) Total Weighted Tardiness of the sequence
pl Lower limit of processing Time
pu Upper limit of processing Time
dl Lower limit of due date
du Upper limit of due date
RDD Relative Due Date
TF Tardiness factor index
T Sum of the processing time of the jobs yet to be

scheduled

1 Introduction

Scheduling is concerned with the allocation of limited
resources to tasks over time. It is a decision-making
process that has as a goal to optimise one or more
objectives. The resources and tasks may take many
forms. The resources may be machines in a workshop,
runways at an airport and crews at a construction site,
as well as processing units in a computing environment,
and so on. The tasks may be operations in a produc-
tion process, take-offs and landings at an airport,
stages in a construction project, executions of computer
programs, and so on. Each task may have a different
priority level, processing time, and due date. The
objectives of scheduling may also take many forms.
Some possible objectives are the minimisation of the
completion time of the last task, the minimisation of
the number of tasks completed after the committed due
dates etc. If the job is completed after its due date, it is
considered as Tardy (Baker 1974), and charged with a
penalty equal to its completed time minus due date
known as weighed tardiness. The sum of the weighted
tardiness of all jobs in a sequence is known as total
weighted tardiness. The problem environment we have

Int J Adv Manuf Technol (2003) 22: 243–248
DOI 10.1007/s00170-002-1466-0

R. Maheswaran Æ S. G. Ponnambalam

R. Maheswaran
Department of Mechanical Engineering,
MEPCO Schlenk Engineering College,
Mepco Nagar-626 005,
Virudhunagar district, Tamil Nadu, India

S. G. Ponnambalam (&)
School of Engineering and Science,
Monash University Malaysia,
46780, Kelana Jaya, Selangor, Malaysia
E-mail: sgponnambalam@yahoo.com

chosen is a Single Machine-Scheduling with perfor-
mance measure of total weighted tardiness. The
objective is to find a sequence that minimises the total
weighted tardiness.

Bahram Alidaee and Ramakrishnan states the same
problem as follows (1996): There is a set of n indepen-
dent jobs ready at time zero to be scheduled on a single
machine which is continuously available. Associated
with a job i (i=1,2,.......,n) there is a processing time (pi)
and due date (di) and a weight (wi). Let r=([1],
[2],.......,[n]) be a sequence of the jobs, where [i] is the ith

job. Given a sequence r, let

C i½ � ¼
Xi

j¼1
p j½ � ð1Þ

T½i� ¼ max 0;C½i� � d½i�
� �

ð2Þ
be the completion time and tardiness of ith job. The
objective is to find a sequence r that minimises

Z rð Þ ¼
Xn

i¼1
w i½ �T i½ � ð3Þ

Lenstra et al. proved that single machine total
weighted tardiness problems are strongly NP hard
(Lawler et al. 1993). Coffman observed that complete
enumeration to get exact solution, have computational
requirements that frequently grow as an exponential or
high-degree polynomial in the problem size n. In such
cases, problems of practical size cannot be solved
exactly and some approximate solution with guaran-
teed accuracy can be obtained by certain heuristic
algorithms (1976). One such heuristic algorithm is used
for our investigation to find out the influence of the
hardness determining factors used to generate the
bench mark problem instances available in the OR
library.

2 Test problem generation

There is no common method for the formulation of
problem instances for the single machine scheduling.
Many authors used different random methods for
generating the problems as explained below.

Hariri et al. generated the test problem instances as
follows (1995): They used to select two parameters
namely, lower bound of due date (dl) and upper bound
of due date (du) which represent the relative values of
due dates. For each job, an integer value of processing
time (pi) is randomly generated from the uniform
distribution [1,100] and an integer weight (wi) is ran-
domly generated from the uniform distribution [1,10].
After selecting the parameters dl and du, total
processing time P ¼

Pn

i¼1
pi is computed and an integer

due date (di) is generated from the uniform distribution
[P x dl,P x du].

Crauwels et al. generated the test problem instances
as follows (1998): They used to select two parameters
namely relative range of due date (RDD) and the
average tardiness factor (TF). For each job, the integer
processing time (pi) is generated from the uniform
distribution [1,100] and an integer weight (wi) is gen-
erated from uniform distribution [1,10]. For the
selected values of RDD and TF total processing

time P ¼
Pn

i¼1
pi is computed and an integer due date

(di) is generated from the uniform distribution
[P(1)TF)RDD/2), P(1)TF+RDD/2)].

Franca, Mendes and Moscato generated the test
problem instances (2001). The generation of processing
times and set up times of each job follows a discrete
uniform distribution DU[0,100] according to two
parameter namely due date range (Dd) and due date
mean (dm). The due date range is defined by due date
factor (R) which is described as Dd=R·n·pm and due
date mean is defined by Tardiness Factor (TF) which is
described by dm=(1)TF)·n·pm.

3 The heuristic algorithm used

Dileep Sule described a heuristic procedure which is
easy to apply and is efficient called as Backward For-
ward heuristics. This procedure is developed in two
phases: the backward phase is applied first, to get an
initial sequence and then the forward phase is applied
to make further improvements (1997).

3.1 The backward phase

In the backward phase the initial sequence is developed
by the following procedure. The sequential job assign-
ment starts from the last position and proceed backward
towards the first position. The assignments are complete
when the first position is assigned a job. The process
consists of the following steps:

Step 1: Note the position in the sequence in which the
next job is to be assigned. The sequence is
developed starting from position n (number of
jobs) and continuing backward to position 1.
So, the initial value of the position counter is n.

Step 2: Calculate T, which is the sum of the processing
times for all unscheduled jobs.

Step 3: Calculate the penalty for each unscheduled job
i as (T)di)·wi. If di>T, the penalty is zero,
because only tardiness penalties are considered.

Step 4: The next job to be scheduled in the designated
position is the one having the minimum penalty
from step 3. In the case of tie, choose the job
with the largest processing time.

Step 5: Reduce the position counter by1.

Repeat steps 1 through 5 until all jobs are scheduled.

244

3.2 The forward phase:

Perform the forward phase on the job sequence found in
the backward phase that is the best sequence at this
stage. The forward phase progresses from the job posi-
tion 1 towards the job position n. Let k define the lag
between two jobs in the sequence that are exchanged.
For example, jobs occupying positions 1 and 3 have a
lag k=2. The forward phase algorithm is described by
means of a flowchart as shown in Fig. 1.

4 The computational experience

The bench mark problems are available in OR library
from the web site http://www.ms.ic.ac.uk/jeb/orlib/
wtinfo.html and the problem instances are generated as
follows:

For each job j (j=1,...,n), an integer processing time
pj was generated from the uniform distribution [1,100]
and integer processing weight wj was generated from the

Fig. 1 Flow chart for the
forward phase

245

uniform distribution [1,10]. Instance classes of varying
hardness were generated by using different uniform
distributions for generating the due dates. For a given
relative range of due dates RDD (RDD=0.2, 0.4, 0.6,
0.8, 1.0) and a given average tardiness factor TF
(TF=0.2, 0.4, 0.6, 0.8, 1.0), an integer due date dj for
each job j was randomly generated from the uniform

distribution [P(1)TF)RDD/2), P(1)TF+RDD/2)],
where P=SUM{j=1,...,n}·pj.

For the Backward Forward heuristics, a C++ code
is developed and executed in the Pentium II 233 MHz
processor, 128 MB ram. We tested the program on 125
benchmark instances for the single machine total
weighted tardiness problems of number of jobs n=40,

Table 1 Comparison of the
value with the best known value
for n=40

S. No RDD TF Best known value
(OR-library)

Calculated value
(BF heuristics)

1. 0.2 0.2 913 913
2. 0.4 16225 16668
3. 0.6 17465 17562
4. 0.8 63229 64272
5. 1.0 119947 120536
6. 0.4 0.2 64 64
7. 0.4 6575 6709
8. 0.6 19611 20479
9. 0.8 78139 78830
10. 1.0 113999 114598
11. 0.6 0.2 0 0
12. 0.4 3784 3784
13. 0.6 19771 20280
14. 0.8 78451 78889
15. 1.0 115249 116691
16. 0.8 0.2 0 0
17. 0.4 684 684
18. 0.6 25881 26743
19. 0.8 55730 56490
20. 1.0 114686 115109
21. 1.0 0.2 0 0
22. 0.4 0 0
23. 0.6 21109 21380
24. 0.8 66707 67138
25. 1.0 73041 73252

Table 2 Comparison of the
value with the best known value
for n=50

S. No RDD TF Best known values
(OR-library)

Calculated value
(BF heuristics)

1. 0.2 0.2 1996 2069
2. 0.4 8499 8716
3. 0.6 36378 36542
4. 0.8 72316 74145
5. 1.0 224025 224455
6. 0.4 0.2 4 4
7. 0.4 9934 10124
8. 0.6 22739 23041
9. 0.8 90163 91680
10. 1.0 133289 133497
11. 0.6 0.2 0 0
12. 0.4 3770 3926
13. 0.6 17337 17600
14. 0.8 77930 78745
15. 1.0 98494 99187
16. 0.8 0.2 0 0
17. 0.4 816 816
18. 0.6 15451 16707
19. 0.8 89289 90264
20. 1.0 139591 140298
21. 1.0 0.2 0 0
22. 0.4 0 0
23. 0.6 35106 36787
24. 0.8 101665 102319
25. 1.0 78315 78852

246

n=50 & n=100. The bench mark set contains five in-
stances of each combination of TF & RDD values. After
having pilot runs, one best result from each set which
leads to 25 problems in each case of n=40, n=50 &
n=100 are analysed and the results are compared with
the available best known values. The comparison is
shown in the Tables 1, 2 and 3.

All of each instance of the bench mark instances are
solved in terms of milliseconds. The percentage of
deviation for the algorithm from the best known values
are calculated by the following formula,

% of deviation ¼ Zcal � Zbest

Zbest
� 100

Where Zcal–Calculated weighted tardiness value by
algorithms Zbest–Best known weighted tardiness value
available in OR library.

The mean percentage of deviation for the test prob-
lems are found to be 0.998% for n=40, 1.51% for n=50
and 4.114% for n=100 jobs.

The average percentage of deviation for the different
RDD values of the bench mark problems with the
numbers of jobs n=40, 50 & 100 is calculated and
compared and shown in Fig. 2

Table 3 Comparison of the
value with the best known value
for n=100

S No RDD TF Best known values
(OR-library)

Calculated value
(BF heuristics)

1. 0.2 0.2 5283 5470
2. 0.4 59434 61579
3. 0.6 157476 166619
4. 0.8 544838 577793
5. 1.0 744287 764853
6. 0.4 0.2 8 8
7. 0.4 24202 25299
8. 0.6 90440 98936
9. 0.8 425875 445268
10. 1.0 623356 649886
11. 0.6 0.2 0 0
12. 0.4 19912 21412
13. 0.6 56510 58655
14. 0.8 401023 437133
15. 1.0 640816 658963
16. 0.8 0.2 0 0
17. 0.4 1400 1400
18. 0.6 54612 58877
19. 0.8 326258 340573
20. 1.0 622464 652952
21. 1.0 0.2 0 0
22. 0.4 0 0
23. 0.6 159123 167277
24. 0.8 370614 397859
25. 1.0 397029 420450

Fig. 2 Mean deviation vs. RDD

Fig. 3 Mean percentage deviation vs. TF

Table 4 Maximum and minimum mean deviations

Number of jobs Minimum mean
deviation

Maximum mean
deviation

RDD TF RDD TF

n=40 0.6 0.2 0.4 0.6
n=50 0.4 0.2 0.8 0.6
n=100 0.8 0.2 0.6 0.6

247

The average percentage of deviation for the different
TF values are calculated and compared and shown in
Fig. 3

From the above graphs, the maximum and minimum
mean deviations occurring for the different values of the
RDD and TF are shown in Table 4.

From Table 4 of the minimum mean deviation of
the obtained results by backward forward heuristics
from the best known solution, it is observed that for all
the set of bench mark problems is occurring at the TF
value of (0.2) and the maximum mean deviation is
occurring at the TF value of (0.6).

5 Conclusions

This paper deals with the investigations of the perfor-
mance of Backward Forward heuristic algorithm for
solving the problem of scheduling in a single machine to
minimise the total weighted tardiness. Three different
methods of generation of test problem instances are
discussed. Extensive computational procedure is used to
compare the algorithm by solving the problem instances
available in the OR library and the best known value is
used as the criteria for finding out the percentage of
deviation. As the CPU time for getting the best known
values are not available and the time taken to solve even
100 jobs problem is within the acceptable limit of
millisecond, the comparison of CPU time is not given in

this paper. The solution obtained by the proposed heu-
ristics is within minimum percentage of deviation from
the optimal or best known solution, and it may be
considered as a guaranteed approximate solution.

Acknowledgement The authors are grateful to the management, the
principal and the head of the Mechanical Engineering Department
of Mepco Schlenk Engineering College for their kind support of
this paper.

References

Alidaee B, Ramakrishnan KR (1996) A computational experiment
of covert-AU class of rules for single machine tardiness
scheduling problems. Comp Ind Engin J 30(2):201–209

Baker KR (1974) An introduction to sequencing and scheduling.
Wiley, New York

Coffman JR (1976) Computer and job-shop scheduling theory.
Wiley, New York

Crauwels HAJ, Potts CN, van Wassenhove LN (1998) Local search
heuristics for the single machine total weighted tardiness
scheduling problem. J Comput 10(3):341–350

Franca PM, Mendes A, Moscato P (2001) A memetic algorithm for
the total tardiness single machine scheduling problem. Eur J
Operat Res 132(1):224–242

Hariri AMA, Potts CN, van Wassenhove LN (1995) Single ma-
chine scheduling to minimize total weighted late work. J
Comput 7(2):232–242

Lawler EL, Lenstra JK, Alexander HG, Kan R, Shmoys D (1993)
Sequencing and scheduling: algorithms and complexity.
Handbooks in OR & M.S, vol. 4, Elsevier, Amsterdam

Sule DR (1997) Industrial scheduling. PWS, Boston, MA

248

